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0. INTRODUCTION

Some notations: Before we start, let us quickly list some of the notations

and conventions that will be used.

When an expression of the form ab is a subscript or exponent, it will some-

times be written as a(b) for typographical convenience.

The characteristic function (indicator function) of an event A in a pro-

bability space will be denoted by IA or I(A).

The complement of an event A in a given probability space will be denoted

by Ac.

The fraction 0/0 is always interpreted to be 0.

For any number p, 1 < p!o, the conjugate exponent will be denoted by

p'(l -p' !5-); that is, I/p+l/p' =1.

For a given bounded signed measure p, the total variation of V (on the

whole measurable space) will be denoted by var(p).

The zero element of a given Banach space will be denoted simply by 0.

For n=l,2,3,...,

..[l]n: = {(Pl...., Pd: lPk<- for all k=l,..., n).

Let (S,M,P) be a fixed probability space. By a "measure of dependence"

we mean any function d mapping pairs of sub-0-fields of M into

: = u {0} ul-} and satisfying the following two natural requirements:

1tO1) For any two a-fields F and GcM, d(F,G) = sup d(FoG 0 ) where

the sup is taken over all pairs of finite 0-fields F0 c F and GO c G; and

(0.2) d(F,G) =0 if and only if F and G are independent a-fields.

As a consequence of eqn. (0.1), d is "increasing": If F cF and

G1 e g  then d(Fl ,Gl) I d(F,G).

%.°,... -,, , .-, .... , - -. .. .-...-.....-.- :. .... . . . . -... ...- . . . .. . ... - . .. . ... - .., - --.. ": .
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This paper is mainly concerned with "dominations" of measures of depen-

dence in the following sense:

We say that a measure of dependence d is "dominated" by another measure

of dependence d2  re l d2) if there exists a function 0: )R+ +

such that IP(0) =0, * is continuous at 0, and dl!5t(d2)

(i.e. dl(F,G) -4(d2 (F,G)) for all pairs of a-fields F and Gc M).

If dlJd 2 and d2 dl, then we say that dl and d2 are "equivalent".

Note that if (F ,G n), n=1,2,... is a sequence of pairs of a-fields

such that d (Fnn) -0 as n -- , then for any dl Ad 2  we have that

d 1l(Fn G n) 0. Conversely, if dl(F n,G n ) -0 as n-- for every sequence of

pairs of a-fields such that d2 (F n,G) --0, then dl d2. (To see why, con-

sider the function $(t): = sup{d I (F,G): d2 (F,G) <t}.)

Stronger types of "domination" may be defined by imposing conditions on

(D. For example, 4linear implies the strong condition dI <Cd2. In all cases

of domination studied in [3J and in this paper, 0(t) may be taken as a power

t 6 , with 6>0, for small t. This implies that if d2 (Fn,Gn ) -0 exponentially

fast then so does d (Fn G n). This type of property is of interest in connec-

tion with certain mixing conditions, but we shall not pursue this further in

the present paper.

Here and throughout the paper, for measures of dependence d1 and d2 , the

equation dI =d 2 means that dI(F,G) = d2 (F,G) for all pairs of a-fields F

and G, and the equation d1 sd means that dI(F,G) - d2 (F,G) for all F,G.

Thus d1 -5d2 is technically a stronger statement than dlAd 2 .

Here are some examples of known measures of dependence that we shall be

interested in later on. Prior to each one, the name of the corresponding

mixing condition for stochastic processes is given:

o 2e., A . . . .S o O . * - . o , S .
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Strong mixing,

(0.3) a(F,G): = suplP(AnB) - P(A)P(B)I, AEF, BeG

0-mixing,

(0.4) O(FG): = suplP(BIA) - P(B) I, AeF, BcG, P(A) >0

ip-mixing,

. (0.5) q(F,G): = supIp((AnB) 11, AEF, BcG, P(A)P(B) >0

p-mixing,

(0.6) p(F,G): = suplCorr(X,Y)j, X EL 2 (F), Y EL 2 (G),

X real, Y real

Absolute regularity ("weak Bernoulli"),

(0.7) O(F,G): = sup F P(AinB.) - P(Ai)P(B.)I
i=l j=l

where this sup is taken over all pairs of partitions {AV ... A I and

{B,., B } of 0 such that Ai eF for all i and B. EG for all j. To

put this another way, a(F,G) = (;I).var(PFxG - PF xPG) where PFxG is the

restriction to F xG of the measure on S xQ induced by P and the diagonal

mapping w I+ (w,w) and PFP PG are respectively the restrictions to F and G

of the measure P.

p-mixing again (see [21, [3, Theorem 1.1(ii)], or [4]),

(0.8) X(F,G): = sup I'(AnB) - P(A)P(,BEG,[P(A)P(B)1 , EF BG

P(A)P(B) >0

Some simple dominations between the above measures of dependence are

given by simple inequalities:

-, x(F,G) <- (F,G) ! O(F,G) 5_ i(F,G)

cx(F,G) ! X(F,G) 5 p(F,G)

The domination

*Ff,G) <-2.¢F,G)

. . . . . . * ..-

*. . . . . . . . . . . . . . . . .

r *". '-* 0* * * . * . 5 0b .~9*
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* is well known (see e.g. [9, p. 309, Theorem 17.2.3J), and it has been improved

independently by Denker and Keller [6, p. 506, line 2 and p. 516, line -8]:

p(F,G) < 2-max{O(F,G), o(G,F)}, and by Peligrad [13, p. 462, eqn. (4)]:

p* p(F,G) 5 2.,N(F,G)., (GF). Another domination, taken from [3, Theorem 1.1],
S.

is as follows:

p(F,G) : C.)(F,G).[1 - logX (F,G)]

where C is a universal constant.

The present paper continues and complements [3]. Now [3] was motivated

by Rosenblatt's [15, Chapter 7] use of the Riesz convexity (interpolation)

.. theorem to compare mixing conditions on Markov chains. Also, Lifshits

i11, Lemma 1] used the Riesz-Thorin interpolation theorem in order to

- establish a moment inequality involving several measures of dependence. The

S- idea of [3] was to use operator theory to try to develop a unified approach

" to the study of a large class of measures of dependence, and to prove "general"

domination results for this class. The main point in [3] was to consider a

particular bilinear form:

(0.9) B(f,g): = E(fg) - (Ef)(Eg)

defined for simple functions f and g such that f is F-measurable and g is

G-measurable (where F and G are, say, given a-fields cM). Various norms of

the bilinear form B define a large class of measures of dependence. Fol-

lowing L31, for 1 !p,q i , for given a-fields F and G, we shall be

interested in the (p,q)-norm of B on F xG, namely
I C~'fg) - i)(g)

(0.1 Rp(F,G): = sup IL - (Ef)(F
ii fli HlglF

f simple, complex-valued, F-measurable

g simple, complex-valued, G-measurable

o'.- -".' . .-. '.-.% -....-.-. ,..,... ............ . ... '.'-,' ".. '..... . .. . ..'.'. ...-- .. _ :
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Later on, we shall also be interested in a version of (0.10) using r.v.'s

f and g taking their values in Banach spaces. We shall also consider for

fixed 0 5r,s!- 1,

(0.11) a (F,G): -- sup IP(AnB) - P(A)P(B) Ar,s [P(A) ]r[P(B)Is AF BEG

which is a variant of R I/r,/s(F,G) in which only indicator functions are

being used. In the terminology of [16], ar,s is simply the "restricted"

(1/r,l/s)-norm of the bilinear form B.'

Of the six measures of dependence in eqns. (0.3)-(0.8) above, five can

immediately be fit into this framework, as follows:

= O O , 0 19 a l, , * = al ,  = , 1,' = R2, 2

(The last equality p = R follows from [18, p, 512, Theorem 1.1] and a2,2

trivial calculation; restriction to real, mean-zero r.v.'s would have no

effect on R in the special case p =q =2). The remaining one, namely BP,q

in eqn. (0.7), will be expressed in terms of (0.9) using B-valued (Banach

space valued) r.v.'s in Section 2.2 later on.

When we wish to consider a version of (0.10) for just real-valued r.v.'s,

we shall use the notation

(0.12) R p,q(F,G;R) = p IE(fg) - (Ef)CEg)Ip-q Ilfil pIIg8I

f simple, real-valued, F-measurable

g simple, real-valued, G-measurable

A trivial calculation yields

(0.13) Rp (F,G; I) < R (F,G) <_ 4.R (F,G;I I)pq ppq 1,q

(and one can lower the 4 somewhat). When we don't wish to mention F and G

.'...................................

. . . i.. .

. ....
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explicitly, the measure of dependence R pq(.,.;R) will be written simply

as R p,q( R).

In eqns. (0.10) and (0.12) the restriction to simple functions will be

convenient, but it is obviously a stronger restriction than necessary.

The following proposition is well known and quite elementary:

Proposition 0.1. If lp,qs-, and F and G are a-fields, then the fol-

lowing two statements hold:

(i) Rpq (F,G) = spEfG) - f q

hf lp
f simple, complex-valued, F-measurable

IIEcflG) - Ef1lq,
(ii) Rpq (F,G;]R) = sup

pf

f simple, real-valued, F-measurable

Using this proposition, some results in Rosenblatt [15, Chapter 7] can be

transcribed into our language, including the following statement from

[15, p. 211, Theorem I]: The measures of dependence R (and Rp,(EU,

1 <p <-, are equivalent.

Remark 0.2. There is a nice connection between Lorentz spaces and the

measures of dependence a r,s . In this remark we shall summarize some key

points of this connection; the reader is referred to e.g. [1] [8] [19] for

the details on Lorentz spaces. In fact a can be considered as a Lorentz
r,s

space norm of the bilinear form B in (0.9). Recall (see e.g. [1]) that the

Lorentz space Lp, 1, _p< -, may be defined as the completion of the set of

simple functions with the norm 11flp,1: inf 1iai.P(A)/P: i A(i)=f}.

This definition makes sense also for p = ', and L,1 equals L with
-1- -
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an "equivalent norm" (see [1]). If 15p <-, then the dual space of L

equals Lp, : = {f: supt>Otl/'PP(IfI >t) <-}. Let p = 1/r and q = 1/s.

Then cr,s equals the norm of B on Lp1 x L or, equivalently, if q <-,

the norm of the linear operator E('IG) - E(') from L p(F) into Lq,*(G).

It is obvious that, with r =l/p and s =l/q, one has a r,s(F,G) p,q(F,3).

On the other hand, L z.L for every p1 >p, and thus

a (FG) 2 C R (F,G) if p1 >l/r and q > 1/s. (Here the constant Cr,. Ploq 11

depends on r,s,pl,ql.)

Remark 0.3. All of the measures of dependence d that are studied in this

paper have, in addition to eqns. (0.1) and (0.2), three other nice properties.
OD ~ N N(a) d(nlF n n lim d(n,,vFn, N

S(b) The measure d is given by a well defined formula that is applicable

"* on any probability space.

(c) For finite a-fields F and G the quantity d(F,G) does not depend on

the particular choice of F and G or on the underlying probability space

"S(,M, 11), but depends only on the matrix (P(A nB.): 1 -i ! I, 1 !5 j -< J)

where A1 ... , AI (resp. B1,..., B j) are (in any order) the atoms of F

(resp. G). Thus (by eqn. (0.1)) measures of dependence can be formulated in

*i terms of properties of doubly stochastic matrices. Some of the "domination"

results obtained in this paper may be closely related to matrix inequalities

*' (of which there is already a huge theory).

Remark 0.4. Keeping in mind Remark 0.3(b) for the measures of dependence

that we study, the statement "d1 fails to dominate d21 will be used to mean

that there exists a probability space on which d1 fails to dominate d2. (It

.P is easily seen that in such cases d will fail to dominate d2 on the12

probability space [0,1] with Lebesgue measure, or on any other atomless

.°. .°... . ° - .° °- °.° ° ° % . °. ..° . . . . .......°.. °.o.-°.°-.... -°°
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probability space.) To prove that d fails to dominate d2 it suffices to

show that for different choices of pairs of a-fields F and G, on different

choices of probability spaces, one can have dI(F,G) arbitrarily small

without d2 (F,G) being (arbitrarily) small (for the same F and G). For

* then by taking the product of countably many such probability spaces, one

can obtain a single probability space on which d1 fails to dominate d2

(i.e. on which there are a-fields F and G, n such that

d1(Fn , Gn) 0 as n-- but d2 (F n, G ) fails to converge to 0).

In [3] a detailed analysis of dominations between a and R was".r,s p,q

given in the "lower triangle", r + s:51 resp. 1/p + 1/q 51. In par-

ticular it was shown that among these measures of dependence in the lower

triangle there are only four equivalence classes. Section 1 of this paper

will complement that analysis. There, in Section 1.1 it will be shown that

13, Theorem 3.6] (one of the main tools for the study of measures of depen-

dence in [3]) is within a multiplicative constant of being sharp. In Section

1.2 it will be shown that for a and R in the "upper triangle",
r,s p,q

- r + s >1 resp. I/p + 1/q >1, there are no equivalencies except for the

well known one al,1 =R ,I " In Section 1.3 a short proof of [3, Theorem 2.2]

is given, using a three-step "reiteration" technique. Section 1.4 contains

sharp domination results for the case where one of the two 0-fields is

* finite with only two atoms, each having probability .

Section 2 is devoted to measures of dependence based on B-valued (Banach

* space valued) r.v.'s. In Section 2.1 a preliminary discussion is given. In

Section 2.2 the dependence coefficient a (in eqn. (0.7)) will be fit into

-. this B-valued scheme, and it will also be shown that if p> 1 and q > 1

- then Rp,q fails to dominate B. In Section 2.3 we drop an unnecessary assump-

tion made in [3, Theorem 4.2].

.............. ... ,.....................-
• , .. % % • , o. o -. ". % . •° % ** O~ o.,. - .o -.- o .°. .-.. . . . . . ..•.-.. . . . .o.. . . . . . . . . . . . . . . . . . . . . -* *..-.-
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SECTION 1: THE SCALAR CASE

In Section 1 here we study measures of dependence based on random variables

taking scalar (i.e. real or complex) values, namely the measures of dependence

R pq(F,G) and R pq(F,G;]R) from eqns. (0.10) and (0.12). Because of eqn.

(0.13) we really only need to discuss one of these two (families of) measures;

following [3] we shall discuss R p,q(F,G) (which uses complex r.v.'s). Of

course the measures a will also be part of this discussion, which is in-r,S

tended to complement (3].

SECTION 1.1: SHARPNESS OF A DOMINATION RESULT

Section 1.1 here is the only part of this paper in which measures of

dependence between more than two a-fields will be included. In [3], Theorem

3.6 was a key tool for comparing some measures of dependence between two or

more a-fields. Here, for any given choice of parameters meeting the specifi-

-cations in (3, Theorem 3.6j, we shall show that [3, Theorem 3.61 is within a

constant factor of being sharp. The sharpness (in the same sense) of [3, Theo-

rem 2.11 follows as an indirect consequence. (Otherwise a sharper version of

Theorem 2.1 would lead to a sharper version of Theorem 3.6 by the same proof,

• and this would contradict the example given below.) The nature of the example

given below is such that it also confirms the sharpness (in the same sense) of

[3, Theorem 4.1(vi)].

Before stating the result, let us recall some terminology from [3]. Sup-

pose (0,M,P) is a probability space, and F F2 ... F are a-fields cM.1' 2 "' n

Suppose B: S(F1) x...x S(F) C ¢ is an n-linear form, where S(F) denotes

the set of (equivalence classes of) F-measurable complex-valued simple func-

tions. Suppose p: = (p"... Pn) where 1-<Pk5-< for all k=l,.... n.

* °Then we define (as in 13]),



10

1.1) 1BI p B(fl..., f

pp

11II l *l . . 11 f n

fkES(Fk) for all k=l,..., n

IB(I 1 . . I )
(1.1.2) d (B): = sup 1 n

IIA 1p1  n Ipn

AkEFk for all k=l,..., n

Theorem 1.1.1. Suppose n>2 is an integer and lPk , k=l,..., n.

- Define p: = {P1 ''''' pn )  Then there exists a constant C depending only on

p such that the following holds:

For each t, 0< t< 1, there exists a probability space (,M,P) and

a-fields F1,..., Fn cM, and an n-linear form B: L=(F 1 ) x...x L (Fn C

(myf n= Efk ) such that d (B) < t(namely Befl,..., fn): = E~f1  .... fn) - ~k= 1

and 1II l2 _Ct(1 - log t)c where c: = E 1/pI with K: = {k:

The constant exponent c here also depends only on p and is exactly the

. same as in [3, Theorem 3.6]. (Thus [3, Theorem 3.6] is within a constant

" factor of being sharp. See also the Addendum on p. 52 of this report.)

Proof. If Pk c{,o} for all k=1,..., n then the theorem becomes

* trivial. So we assume that l<Pk<W for at least one k.

For each p, 1 <p <-, and each v, 0 <v s- , define the function

G Vp: [0,1I-+[0,l1 as follows:

G.C (x): = min{xvxl/P) for 0Sx<

G vpC (x): = vpC (I -x) for -<x< 1

Note that G is concave and increasing on [0, ] and hence G is concave on

................ ..-....-. * .-.. ... . .L.%°* ' - .° . • .° . • =" . ° . , ' ° ' ° . . ° . ° = ' •* " . ° % ,° . - - . ' • ' .°...' . . - - - - . • , ° -
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For l<p<- and O<v< define the function gv, [0,I [-,I]

by gvp(x): -d G (x). That is,

(1.1.3) I{ 1 if O<x<vp'

v*(I/p) ox"I/ p , if vp , <x<h

9 V OP W-V 9* (I/p ) .( 1 - X ) " I  /p t i f 11< x < l - VP

-I if 1 -v <x<1

(gV is not defined at x=0, v , h, I -vY , 1.) Then gv'p is non-increasing,Vg~(X s eind

fl p(x)dx = 0, and g (x) I 1 for all x at which gv,p(x) is defined.

If O<v!h and p=l or -, define the function

gVp : [0,11-+[-1.1] by

J (1.1.4)

1 if O<x<

•{ -I if <x<l

In this case too, g is non-increasing, fog (x)dx =0, and Ig (X)t <_.
VIp 0 VIP VIP

The following integral will be used later on. If 0<v< and l<p<-,

then

(1.1.5) gv,p~x)lPdx = vP'[1 + (1/p)P'(log - p' logv)]
0

Now let us get to the main part of the argument.

Henceforth m denotes Lebesgue measure on [0,1].

Let t, 0 <t < ( )n be arbitrary but fixed. (There is no loss of

generality in specifying 0 <t < (1) n rather than 0 <t <1 as in the statement

*of Theorem 1.1.1.)

Define v, O<v< , by

%%

.(..6) Vd{k: C<p(k)<co}

- t. * . . .

.'..'. ". .'. ....... ,. ." .' X "'%.." . . . • .. .. .... " .-.-". ... % . . - ..'.".'. '.'."". ". . ", *"".. "*.
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Define the probability "ace (SI,M,P) as follows:

S: = [0,1]: = 0,I] x [0,1] x...x [0,1]. M is the a-field of Borel subsets

of 11. P is defined by

n nP(AI x...x An -= m(Ak) + f =gv (x)dx

* *1k=l k=l Ak VDPk

for all Borel subsets Al ... , Anc [O,1]. (Recall the inequality Ig v (X) !I

mentioned above.)

Note that since ogp (x) =0, each of the marginal distributions of p

is uniform on [0,1].

For each k =1,..., n let Fk be the a-field generated by the kth coor-

dinate in SI. Define the n-linear form B: LOO(F ) x...x L (Fn C as follows:

n

Be " " f -- E(fl "" n - k
k=l

Proof that dP (B) ! t:

Suppose D F k=l,..., n with P(Dk) 0. For each k, represent
Sups k ks

Dk by Dk: = [0,1] x...x [0,1] x Bk x [0,1] x ... x [0,1] (where the kth

coordinate-set Bk is a Borel subset of [0,1]). Then

n
B(D ID I )I (Xdx

1 n k=lfk

n m(Bk)
H If 0  gv (x)dx]
k=l Pk

moo.m(B 
kI1 < })G vP (m(Bk))]l • n ff [ 9 gvP(x]dx] ]

{k:l < p k{k : Pk=l orx}

,•9'.: [ II v.(InBk)lP . It m(Bk) ] . [  HI l
k k

{k:l <pk<' }  {k:pk =} {k:pk = -}

*. . . . .. . - > .- ,..- . .* ~*. . . . . . .
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* card{k:l <p(k) <_). n
V II 1 p

k=l k k

n
= t" I lI p

k=l k k

by eqns. (1.1.3), (1.1.4), and (1.1.6) and the fact that for each 0 <v< ,

1 :p:5 the function gv,p is non-increasing (as noted earlier) and odd-

symmetric. Thus d p(B) : t.

Proof that IIBI RpCt(1 - logt)c (for some constant C depending only on

p). (Here c is as in the statement of Theorem 1.1.1.)

Define the r.v.'s fl "... f as follows:

fk(xl,..., Xn) g gvPk(x k ) if pk = 1 or

, /k

kPk

To shorten the notation below, we write fk(x) instead of

- fk(xl .. , Xk-lXuXk+I xn) Note that for each k, fk E L(Fk)0

Now
nl

B(fl' .... I f) = 1 f fk (x)g (x)dx
n k=l 0 v'Pk

For each k such that = 1 or -, ff(X)gv (x)dx = 1 andk Pk

SlfklI = fk 1.
For each k such that l<Pk< , g (x)dx=2-f~g (x)Ipi dx- " P k <'kx g P k0 , P

and fk Pk= 21/Pk.[P0Igv, Pk(x)IPk dx1 / pk.

Hence

B(fl,..., f = [ 1 [flgvP(x)lPk dx] l - I / k ]
- {k:l < pk< w1 0 P

n• • n I fklk
k=l Pk

.... ... ..... . . • •.*. • o • • ° . ...... .* .-... o .* . o -. - - , -. .: , - . ". ".o.,. - .
*.".' . ' ° * o . o . *-o . .* • • o* , . .• ... . . % . . . . .• . ., .... ... - .. . .. . ;,.:..,,....,............ *..'.... .. s.. .-.? . .* . . . ... . .*. - . . .... ..... . S..... .. ... . .



14

For each k such that 1<Pk <

g (xi dx C CkvA (I log t

" ol/k)V (/Pkp

by eqn. (1.1.5), where Ck := min{l + ("/k) log , (l/n) e(/Pk).

(Note that Ck is positive and depends only on p.)

Hence by eqn. (1.1.6), B(fl,..., f) ? Ct.(l - logt) • 11fk"

k=1 Pk

"" where c is as in Theorem 1.1.1 and C ONII lPk (which is positive
{k:< k

and depends only 
on p).

": Now trivially the supremum of IB(f 1 .... fn/(,IflllPl ".lfn ) is

the same over (fl...I fn n S(F1)x...x S(Fn) as over

L (FI) x ...x L,(Fn ). Hence IBI R C.t.(1 - log t)c . This completes the proof.

Remark 1.1.2. [3, Theorem 3.6] holds for n=l as well as for n>2, by

. a simple argument similar to the proof of [3, Theorem 2.1 or 2.2]. Also,

[3, Theorem 3.6) is within a constant of being sharp for n =1, as one can show

with a slight modification of the above example.
-..

SECTION 1.2: DOMINATIONS IN THE UPPER TRIANGLE

The following definition will be needed: For any point (r,s) such that

0 <r,s!<1, and r +s >1, define Q(r,s) to be the closed (convex) quadri-

lateral region with vertices (0,0), (1,0), (r,s), and (0,1).

Remark 1.2.1. Statements (a)-(g) below give a complete picture of what

dominations (or equivalencies) exist for any two of the various measures of

dependence a and R with Osr,s 1 and 1 <p,q:o5. This whole.- r,s p,q

picture can be pieced together from [3, Theorem 4.1 and Remark 4.1] and Pro-

positions 1.2.2-1.2.6 given below; to do so, one should keep in mind the

trivial facts that for any two a-fields F and G, a (F,G) 5 R (/sCF,G)
-r,s - /r,1/

% %.'. ... ., . . . . , . . , .. .. .. ..-, a, .' ," ,, .",.*.,,, :.".. , ,, . .... .,, ., ."*.,.,...'.' . . *
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and a (FIG) and R 1/r,(/s(FG) are each non-decreasing as r or s increases.

(In particular, the problem mentioned in the last sentence of [3, Remark 4.1]

is solved.) The restrictions O<r,s:l and 15p,q_<- are to be implicitly

understood.

(a) The measures of dependence ar,s' r+s l, and Rp,q, 1/p+1/q<l,

are equivalent; and they do not dominate any of the other measures of dependence

a and Rr,s p,q

(b) The measures of dependence ar,l-r' 0 <r <1, and RPIPS, l<P<
are equivalent; and they dominate a r,s r+s<l, and R p,q 1/p + l/q<1;

but they do not dominate any of the other measures of dependence a r and

R
p,q

Cc) (2 and R1,, are equivalent, aO, and R1 are equivalent.

Neither al,0 dominates a ,1 , nor vice versa. al, and aO, each dominate the

measures of dependence ar,s , r+s<l, Rp,q, 1/p+l/q<l, ar,l r , 0<r<l,

and R p <p oo. Neither a, 0 nor a0 1 dominates any of the measures of

dependence ars, r+s>l, or Rpq, 1/p+1/q>l.

(d) a1 ,1 = R 1 ; and these measures of dependence dominate all of the

other ones a and R
r,s p,q

(e) If 0<r0 ,s0 <1 and r +s0 > 1 , then arots0 dominates ar,s and

R R/r,l/s for all (r,s) EQ(r0,So0), except that aros 0 fails to dominate atO'

R1 11 R 1 or For such (rots 0),R rs dominates a and

R for all (r,s) EQ(roso), except that R fails to dominate al,
1/r,l/s 0rots 0 10

R Ri, a0' or R001. Also for such (r0,So0 ), neither a ros 0 nor R1/roP l/sO

dominates ar,s or R1/r,l/s for any (r,s) JQ(roSo).

(f) If 0<so<I, then all of Remark (e) holds verbatim for r0 =1

(i.e. for the point (ros 0 ) =(1,so)), except that a1 0 (and hence Rl,1/So0

o' dominates a1 0 (and hence also RI).

: ~. .. . . ............... ...-... .....-....----.... '..",-',. ....... '.II o .. - ....

• "' ' - " " % % % %'" " % '- . ° " * ° - % " , ".% " % % " % % " " °" " """- % " "'% " " " "•!t °_ e
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(g) If 0<r 0 <1, then all of Remark (e) holds verbatim for s0 =1

(i.e. for the point (r0 ,s0 ) = (r0 1 )), except that a r01 (and hence R 1/ro,)

dominates a0 ,1 (and hence also R ,I).

The portion of this picture involving only ar,s' r + s :1, and Rp,q,

1/p+ 1/q S 1, was summarized in [3, Theorem 4.1 and Remark 4.1]. (Some of

that portion was already previously known.) The equation a =R is well
11 1,1

* known and elementary. What we have to do here in Section 1.2 is focus on the

measures of dependence ar,s' l<r s<2, and R pq, l<1/p+1/q<2. For

these particular measures of dependence the (positive) domination results men-

tioned in Remark 1.2.1(e)(f)(g) follow immediately from interpolation theory.

*" Since our (probability) terminology is different from the usual terminology of

.* interpolation theory, we shall provide some of the details for the reader's

convenience, in the form of Propositions 1.2.2-1.2.3 below. Then in Proposi-

tions 1.2.4-1.2.6 below, we shall give counterexamples to show that no other

* dominations occur for these measures of dependence.

Proposition 1.2.2. Suppose 05rO,s0 ,r,s 1 51. Suppose that each of the

following two statements (i) and (ii) holds:

(i) Either rO =r I=1, or r0 Cr1.

(ii) Either s0 = s = 1 , or s O s

Suppose 0<0<1. Define r and s by r := -(-0)ro+0r1  and s := (l-0)so+0s I.

* Suppose that the equation r +s >1 is satisfied. Then for some constant

.. C = C(rorlsos 1 ,0), one has that for every pair of a-fields F and G,

R 1r,1/s (F ) C°[a rot 0S(F,G)] 1 [a rI  1 CF,G) I(

In the case r0 Or 1 and s0 sl, Proposition 1.2.2 is an application of

[19, Theorem 2.9] (and Remark 0.2). (The bilinear form B in eqn. (0.9) can be

°'.

."..,..'.......,........ ...... ..-..................- ......... -........ ** .- .. . . -....... -- ,.... . ,. ... •... -,-
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seen as a bilinear operator into Lp(1IFlPl) where I is trivial, consisting

of just a single point; with this interpretation B "fits" the hypothesis of

[19, Theorem 2.9].) In the case r0 =r I =1 and s0 # s1 , one can take r0 and

rI out of the picture by an application of, say, [3, Lemma 3.7(i)], and then

apply 19, Theorem 2.9] in an appropriate way to deal with so, s1 and s. The

other cases in Proposition 1.2.2 are then obvious.

Proposition 1.2.3.

(i) If 0 < ro,s 0 < 1 and r0 +s o > 1, then arots 0 dominates R 1/r,/s for

every (r,s) cQ(roso) - {(l,O),(rOso),(O,l)}.

(ii) If 0 < 0 <01 then als dominates R1/r.1/s for every

(r,s) EQ( 1 ,s0) {( 1,So),(0,1).

(iii) If 0<ro < then a dominates Rl/r 1/s for every
0 ~r0,l1r~/

(r,s) EQ(ro, 1) - {(1,0),(r O, I)}.

Proof. The proofs of all three parts are similar, so we shall only prove

(i). Let S1 denote the line segment with endpoints (rOso) and (1,0), and let

" 2 denote the line segment with endpoints (rts 0 ) and (0,1). Recall that

(trivially) a 1,0 !;1 and ao, < 1. By Proposition 1.2.2, a rots 0 dominates

-' R for every (r,s) E [SluS 2] - {(rOso),(l,O),(0,l)}. Also, trivially,

(a dominates a and hence also measures Rr r +s<1 (which are
rot 0OO i/s'rs<i whi

* equivalent to a 0, as noted in [3, Remark 4.1]). Finally, the remaining points

(r,s) in the interior of Q(ro,so) each lie on some line segment with one end-

point on [S1uS2] - {(rO,s 0),(l,0),(0,l ) }  and the other in {(r,s): r+s<l},

and hence by the multilinear Thorin interpolation theorem (see e.g. [I, p. 18,

. Exercise 131) a dominates R for every such point (r,s).
rosl/r,l/s evrsuhpit(s)

Now we are ready for the construction of counterexamples. A few trivial

facts are worth keeping in mind. The quantity IP(AnB) - P(A)P(B)I remains

AC cunchanged if A is replaced by Ac , or B by B consequently, one always has

.-.. .. , . .. ,- ., . .. ,... . . . . ." .-.. .,-...... .,-'." ."...-.. .,,... ...- ".".. . .""--. .'-.. .-.. .-- -.... . . .-.-..- '
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rspIP(AnB) - P(A)P(B) I

[P(A) ] [P(B)]

r, (F,G) =

P (A) 5 j, P (B) 5

Also, if F and G are finite a-fields, each having exactly two atoms, then

R IrIs(FG) !5 4ac*~ (F,G) by a trivial argument.

Proposition 1.2.4. The following two statements hold:

(i) If 1 <p!5-o then R does not dominatea

(Hi) If 1 <q!5- then R Iqdoes not dominate a0,1l.

Proof. By symmetry it suffices to prove (i). For each c, 0o<e<If,

there exists a probability space and a pair of finite ay-fields

F = {Q,A,Ac,,} and G = {S1,B,Bc,,) such that P(AnB) = P(A) = c and

*P(B) = 1; and by a direct calculation, R 1 (FPG) !5 4a11t,(FG) = 4E /pi

and a 1 (F,G) = . Statement (i) follows, and this completes the proof.

Proposition 1. 2.5. Suppose 0 < r0,s0 ,r,s !5l, r0 +S >l1, r +s >l, and

(r,s) I Q(rs 0 ). Then R I/ols0does not dominate a.r~

Proof. Let ax +by =c be an equation of a line containing (rots) and

one of the points (0,1) or (1,0), such that the points (0,0) and (r,s) are

in opposite half-planes determined by that line. By the assumptions in Pro-

position 1.2.5, we can (and do) take a,b, and c all positive. Thus ar +bs >c.

Also (since r0 +s >1) we have that c =max{a,b}. Define c >0 by the00

equation ar +bs = c +c.

For each n sufficiently large, there exists a probability space and a

pair of finite a-fields F = {I2,A,Ac,$ and G = {SI,B,B , 0} such that

-a -b -a-b -c-eP(A) = n !1,P(B) = n !5 , and P(AnB) = n + n . For such an n

it can easily be checked that RI/r~l/ 01 (F,G) 5 4a11l/ 1 15s0(F,G) =4n-
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and that a ~ (F,G) =1. Proposition 1.2.S follows.

Proposition 1.2.6. Suppose that 0 <r,s~gl, r +s >1, and either r <1

or s <1. Then a rs does not dominate R I/ril/s*

* Proof. By symmetry, without loss of generality we can (and do) assume

that r <1. (So we allow the possibility s =1.)

(In what follows, the symbols wr, 0, and ip do not take their usual

* meanings.)

Define the probability space (S0,M,P) as follows: 0 := [O,1]x{0,l}

* (the union of two disjoint intervals); M is the a-field of Borel subsets of

Q, and P1 is defined by

(1.2.1) P(Ax {01) := f~p(x)dx and P(Ax {11) :f(l -~)d

A A

for every Borel subset Ac [0,1], where

T + qi(x) if x C [O, 1

( 1 .2 2 ) O n - 2 -l p ( u ) d u i f x E ( l
0

where 0 < T < and

Cx if a<x<b4){ 0

ss
whc7r

I-r
(log l/it)r

a : ( s/(l-r)

............................... N) n
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Note that by our assumption r +s>lI and simple arithmetic, we have that

0 O<a<b!01. Also, for nr sufficiently small, one has that 2- ON (x)dx :5 w

and ip(x) !5 1 for all x e[0,%] , and hence 0 ! (x) ! 1 for all x c [0,1] .

Consequently, for wr sufficiently small, eqn. (1.2.1) does indeed define a

probability measure. (We restrict ir to such small values.)

Define the "marginal" aY-fields F and G by

F {A x{0,1}: A c[0,I] Borel set}

G 1[0,1] xB: B = {0,11, {0}, {11, 0}

Define the event B := [0,1] x {01. Note that the marginal of P on [0,1]
0

* is Lebesgue measure, and that P(B) =r 1<

We shall first get an upper bound on a r~ (F,G). First a preliminary cal-

culation will be handy. The function exr-l is non-increasing on (0,-). Also,

* (x) -rr is non-negative if 0!5x:5;, and negative if instead 1< x:5l. Hence,

letting m denote Lebesgue measure, we have that for every Borel subset A c[0,1],

IIo(x) -wj~dx 5 f q) (x) dx 5 f x Srdx
A An[0, ] An[0, ]

5m(An I01k]) Cxr-l d

0

- C/r)*[m(An[0, ])] r ! (E:/r).[m(A)]r

and

A 0

-m(n(I~l]-2*Cx -ldx
0

-: -(c/r).jm(A( ,].

. .(c.)..(n. 1.).m.A. ,.)].
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and hence IfA[ -7x)-lr]dxl < (e/r).[m(A)]r.

Consequently, it is easy to see that

,.'FG) su JP(Ao0nBo0 P(Ao0) P(B o)

a (F,G) = sup
[rs [P(A 0 )]r P(Bo) 0S

A oEF

IA0 (x)dx- [n(A)].rr l
- sup [m(A) ]rs

Ac [0,1] Borel set

!5 supCcr)[(A

[m(A) ]r s

Ac[0,1] Borel set

1

r- (log I/)1l-r

Note that a r,s(F,G) becomes arbitrarily small for n sufficiently small. (We

" are using our assumption r <1 here.)

Now we only need to show that Ri/r,1s(FG) fails to become small with ni.

By Proposition 0.1 and symmetry, we have for p : 1/r and q 1/s (so that

I/p' = 1 - r),

IIE(glF) - Eglp

R (F,G) = sup
pq llglq

%o
" g complex-valued, simple, G-measurable

IIE(IBoIF) - EIBOIIp,

..
*.I.IB ll q

.o0

_!'NA 2 7
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tf l .x) -UlP'dx]ll p '

0 $

[fb (9(x))P'dx]1 / P '

S
7t

[fb(E.xr-l)P dx] 
1-r

• S

a

is

1 I1-r

(lg1/ ) (log b/a) 1-r
i'-l(log I/7T) l-r

1 1(-s s1r
( 1 •(_-r [r I -r

) (log n)](log t/IT)

s 1-s l-r.-- ( T - -
1-r -r

s 1-sSince r+s>l, it follows from elementary arithmetic that is a
]-r r

positive constant. Hence R (F,G) fails to converge to 0 as t r 0. Thisp,q

completes the proof.

"- SECTION 1.3: APPLICATION OF THE REITERATION PROCEDURE

Here we give another proof of [3, Theorem 2.2]. The proof is rather simple

but requires more interpolation theory, and seems to be harder to generalize to

the multidimensional case as in [3, Theorem 2.1]. (Such a generalization of the

proof might be possible if one uses as a tool a version of Zafran's [19, Theo-

rem 2.9] multilinear Marcinkiewicz interpolation theorem with an explicit upper

, bound on the constant.) We shall restate [3, Theorem 2.2] in a somewhat loose

form (applicable to some other contexts besides probability spaces); the main

emphasis is on the proof.

%
t 

o

• . p. . * - * :. - I ... - -. * . .-. ,."." . t , • ........... ... . •
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Theorem 1.3.1. Suppose T is a linear operator, 1 <p <-, and

(1.3.1) T: L -L 1 with normsl,

(1.3.2) T: LO L.0 with norm< 1,

(1.3.3) T: L -L0 with norm<_ e !5 1.

Then

(1.3.4) T: L -L with norm<CE(l + log l/c)I/P where C depends only on p.P p

Note that eqns. (1.3.1) and (1.3.2) imply (1.3.3) and (1.3.4) for E=1 by

standard interpolation theorems (see LI]). The point of Theorem 1.3.1 is that a

small norm in eqn. (1.3.3) forces the norm in eqn. (1.3.4) to be almost as small,

i.e. within a log term. (For the definition of the Lorentz space L ., see e.g.

*[1 or [19].)

Proof. Throughout this proof, the letter C is used only for multiplicative

constants which depend only on p. The value of C may vary from one appearance

to the next.

The trivial cases e =1 or 0 can be omitted. Moreover, to cover the re-

maining cases, without loss of generality we can restrict e to small values.
-2

Henceforth, we impose the condition s<e- 2

Let 6=-l/(loge). Then 0<6! . Define P0 and p1 by

l/p0 = (I-6)/p + 6/1 and 1/p1 = (1-6)/p + 6/-. Then l<p 0 <p<pl<0.

Now we apply the Marcinkiewicz interpolation theorem twice, each time with an

explicit upper bound on the constant in that theorem; see e.g. [20, Chapter 12,

Theorem (4.6) and eqn. (4.2.1)]. In that way, by eqns. (1.3.1) and (1.3.3) we

obtain T: L -L with norm C(I/)I/P E1-6 and by eqns. (1.3.2) and (1.3.3)
p0' 1/Pl 1-6

we obtain T: L - L with norm < C(1/6) . Let 0 =1- 1/p. Then
:." l P'l

0<0< 1 and 1/p= (1-)/po +0/p 1 . By applying the Riesz (or, in the complex

case, Riesz-Thorin) interpolation theorem (see [1]) we have that T: L -L

. . . . .. . . . . . . . . . . . .

"~~~~~~~~~~~ ~. . ..... . .. ... ........ "-..... .-.. •".-."" "-""".-2.'."
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with normiC(1/6)/P E I-6= C(-logc) */P.E-e6<C(-logc) /p -e (since e- =e).

This completes the proof.

SECTION 1.4: A SHARP DOMINATION INEQUALITY

Here our aim is to find a sharp upper bound on Rp p, based on a /p,1/p, in

some cases where one of the two a-fields has two atoms. This complements Section

4.4 of [3].

Theorem 1.4.1. Suppose F and G are a-fields, with G being of the form

G = {Q,BoBI, } where P(B and B1 =B O .c If l<p<o then0 0*

R ,(F,G) s 2al/p ,Z/p(FG).[1 - (1 p'pI log (2a/ (F,))]1/p '

p p

Further, this inequality is sharp; for each a [0, 1] there exists a proba-

* bility space with a-fields F and G = {1,1B0,B1 ,1} where P(Bo) = and

" B1 BO, such that al 1 /p' (FG) = a and R 'p, (FG) = 2a[1- (:9P'pI log(2a)]l/p'

In particular, referring to eqns. (0.6) and (0.8),

p(F,G) s 2A (F,G),[I -I log (2X(F,G))1

Under the hypothesis of Theorem 1.4.1, one automatically has that

p(F,G)- . By the comments prior to Proposition 1.2.4 in Section 1.2,

in evaluating al(F,G) one only needs to consider events A and B with

* probability < . Since 0 -S P(AnB0 s P(A), one has that if P(A) 5 ; then

IP(AnB) - P(A)P(Bo)I 0 ( )P(A) s (h)[P(A)]l/P[P(B0 )]l/P'

• (where B0 is as in Theorem 1.4.1). Consequently a1/p,I/p,(FG) cannot exceed

"- under these circumstances.

The proof of Theorem 1.4.1 will be given at the end of this section and will

be based on some preliminary lemmas.

%. %.. . . . . .. . . . . ........ .......
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We start from the purely discrete case, when F (as well as G of course) is

finitely generated. Thie reasoning is close to that in [12]. We use the extreme

point method and the following version of the Krein-Milman theorem:

Theorem A. If K e n is a compact convex set, then for each x eK

there exist extreme points xl,..., xn+1  of K and non-negative numbers
" l' ' n~ schtht n+l n+l1

A1 ..., An such that il. =1 and x = Fn lXx.

(Recall that xEK is called an extreme point of K if x cannot be represented

as a non-trivial convex combination of points of K.)

We shall be interested in a particular compact convex set of probability

measures on a certain measurable space. Let a E [O, ] and r,s E [0,1] be

fixed, and suppose m is a fixed positive even integer. Define the sets

{1,2,..., ml and 112 = {0,11. The measurable space will be 11l fQ2

*(accompanied by the discrete a-field). For ease of notation we shall denote

A. := {i} i = 1,2,. m, and B0 := {O}, B1 0: l. Let K be the set of

all probability measures on Q I x2 such that

. (1.4.1) P(Aix2 = 1/m for all i=l,...,

(1.4.2) P(n1 x B0 ) = P(Ql XB 1) = ;, and

(1.4.3) IP(AxB) - P(Axa 2)P(QllxB)l < a-[VCAxil2)] r,[pcllxB)]S

for each pair of subsets Ac{l,..., ml, Bc tO,ll.

rn-1Clearly K can be regarded as a compact subset of IR Note that K is

222*- convex too. If PI' p2 E K and 0 < X< , then the probability measure

P := (I -X)P+1 P2 satisfies eqns. (1.4.1) and (1.4.2), and since the marginals

. of P1 and P2 (and hence also P) are equal, eqn. (1.4.3) is also satisfied by P,

* and hence P c K.

We shall be interested in the a-fields

I;..'.,.'.',..',%-.. .",..... .-. ..,..-. ........-.-......',.....-....,.-..........-.....-..-.-..........-.-..-....-......................-.....,
. . . . ..
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.4. F := Ax%2: Ac{l,2,..., m }1 and

(1.4.4)
Gm := f 1 XB: Bc{O,l}}.

(The subscript m serves as a reminder of the parameter m on which 11 xQ2 is

based.) K is the set of all probability measures on S1 X22 with uniform mar-

ginals such that a r,s(F m,G )< a.

Lemma 1.4.2. Each extreme point P EK has the form

P(A 0 (i) XB1 ) = 1/(2m) + F(i/m) - F((i - 1)/m) for 15i! m/2,

P(Ao(i) XBl) = 1/m - P(Ao(m+li) xB) for m/2+lsis m,

where a is a permutation of {1,2,..., m} and F(x) min{x/2, a-2-S xr.

Sketch of proof. Each P E K is uniquely determined by the numbers

A. := P(A i xB 1 ) - 1/(2m), i=1,2,..., m. By eqns. (1.4.1) and (1.4.2) these

* numbers satisfy

m
(1.4.5) A.= 0 and

"" i=1

(1.4.6) IAij < (2m)-' for all ifl,..., m.

Since the property of being an extreme point of K is not affected by the

* order of numeration of events AI,A 2,..., Am, to prove Lemma 1.4.2 we may

assume without loss of generality that A1 >A > > A m . By eqns. (1.4.3)

-.. and (1.4.6) we see that a given sequence of numbers A >.A A corres-
12 m

ponds to a probability P EK if and only if (1.4.5) and the following two

.* equations hold:
k k kr -

(1.4.7) For all k=l,..., m, A. min{ , a.(- 2},
m

(1.4.8) For all k=1,..., m, (-A.) 5 rin- , a-(kr. 2-s}

Si=m+l-k2m m

4,

• ."' "."'"'." " ", .".'"'." :'."' :'-". "'"-.-'"'"."".",'".'.:'." . "'-". "'",-- - - - - - - - -- - - - - - - - -. "-."'.'."-"-- -. "-- - -..-. '- --.- -'-"--"-". "-.
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Using this information, one can check with a little elementary work that the

unique extreme point P of K which satisfies AI A2 > ... Am  is the one in

which equality in (1.4.7) and (1.4.8) is attained for all k=l,..., m/2, i.e.

A. = F(i/m) - F((i-1)/m) for all i m/2,
1

(1.4.9)

A. = -A m+l i for all i2m/2+1,

where F is as in the statement of Lemma 1.4.2. The lenma follows.

Re'ark. Referring to the proof of Lemma 1.4.2, in the case where

r+s=l, the extreme point PEK given by eqn. (1.4.9) has the property that

" for A= {1,..., m/21, P(AnB1) - P(A)P(B1) = a.[P(A)]r[P(B 1)]s and hence

(for this P) a r,s(F m,G) = m. (See the paragraph preceding Lemma 1.4.2.)

The same holds for any other extreme point of K with an appropriate modification

of the event A.

Lemma 1.4.3. Let A1,..., A now be fixed as in eqn. (1.4.9). If
m

- <p,q <-, then for any probability P eK we have that

mi'Ri Rq(FmG m S 2( J AijP')I/P'm 1/p

p ,q m m i1

(where F and G are as in eqn. (1.4.4)). Moreover, equality is attained for
m m

-. any extreme point P of K.

Proof. By Theorem A, each probability P e K can be represented as a

* finite convex combination of extreme points of K, i.e. P = EXaPa where

. A 1, a a 0, and the Pa are the extreme points, given by Lemma 1.4.2.

Here a is ranging over all permutations of {1,2,..., m}.

Since the probability measures in K all have the same marginals, we have

- that for any PcK and any r.v.'s X and Y on Q x S1 such that X is Fm -

measurable (i.e. a function only of the first coordinate) and Y is Gm-measura-

ble (i.e. a function only of the second coordinate),

. .
4- • . • •.• - -...... . ............................... °• - . . -. •. . . • . °°. ••-.
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IJXYdP -JXdPfYdPI s I X'IJXYdPa - JXdPIfYdPal
G

5 maxflfXYdP(,- JXdPaJYdPoI

< a. (JxlPdP)l/p.(flylq dP0) I/q

where a supx,ylfXYdP0  XdrfYdP/(IXI p H IIYIIq)

(the sup being taken over X and Y as above). Note that a depends on m but

is not dependent on a.

If X and Y are as above and we add a constant to Y, then

IJXYdP 0 -IXdPcfYdP0I remains unchanged; but IIY1I q can be minimized (under

addition of a constant) by centering it at expectation. This latter fact fol-

lows from the nature of the a-field G (i.e. two atoms, each with probability

11). Consequently,

a = supx2lXYdPa

* where Y :=B - and the sup is taken over all F -measurable X such that
B in" II lip = 1.

11 1p
From the representation X =m XI we see that a is the maximum ofi=1 i A.

I

" the function f(x1 ,..., X) := 2Em  x under the restriction
mi=lii.. m) 1/p =lp m/ mI t )l/pl

(Ei Ixp), ,  1/p It is well known that this maximum is 2m/P(I.Ail/p

Lemma 1.4.3 (both parts) is now easy to see.

Lemma 1.4.4. Suppose that O sr,s-l and l_!p,q o:. Suppose that F and

G are a-fields on some probability space, where G has two atoms B and Bc , each
having probability . Then there exists a sequence P2,P4,P6,... of probability

measures, where for each (even) m the measure P is defined on
m

1,2,..., m) x {0,1} and has uniform marginals, such that

. ... ........ ......-.. ..... ... ......
. '.. ...,' .- ... *.'.-- ..'-'...,,.'....'....'....'-.'. -. ..,.,.*.,.. ..v '.'....'. -:.,.':: ., .:. ..- ',.' -'-,,*--
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0r, s c( F AG  = limm+- a r, sC(F mGM)

Rp a (FG) = lim R (FG)

p ,q fo p ,q io

where for each (even) m the a-fields Fm and Gm are as in eqn. (1.4.4) and

a r,s(F m,Gm) and R pq(Fm G ) are as defined with respect to the probability

measure P . (In the two limits, m is restricted to even integers.)

Proof. By an elementary argument based on eqn. (0.1), one can show that

it suffices to prove this lemma in the case where F is itself a finite a-field.

We shall henceforth make that assumption on F. Enlarging the given probability

space if necessary we may assume without loss of generality that there exists a

r.v. U which is independent of FvG and has a continuous distribution function.

By an elementary argument,

a r,s(Fva(U),G) = a r,s(F,G) and

(1.4.10)
R p,q(Fva(U),G) = Rpq (F,G)

(where a(...) denotes the a-field generated by (.•))

Let Z be a Fva(U)-measurable r.v. with a continuous distribution function

F (.) , such that F ca(Z). (For example, take Z = En= l I  *fiU) where
* z ' i, (Fr1ip A(i) 1

AM),..., A(n) are the atoms of F and fl,..., fn  are suitably chosen func-

*o tions.) Then as a consequence of eqn. (1.4.10) we have that

a r,s(o(Z),G) = a r,s(F,G) and

Rp,q (a(Z),G) A R (F,G).

Now consider the probability measure P on [0,1] x {0,1) induced by the

random vector (Fz(Z),f ) (where B is one of the atoms of G). Then P has

uniform marginals, and defining the a-fields F* and G* generated by the first

and second coordinates of this new probability space, we have that

%%

-• o t ° .°-•° . i m .,°• - . . . • . o -- • - " . o °- - ° • Q °
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*a (F*,GO) - a r(a(Z),G) = a r(F,G) and

R. (F*,G*) - R (cy(Z) ,G) = R (F,G).
p ,q p q p ,q

For each even m let F' denote the sub-a-field of F* generated by the events

((i-l/m, i/M) x 10 ,11), i *,2,.. ml. Then

lim-N* ars (Fm*,G*) =ar (F*,G*) = a r(F,G) and

limm, R (F*,G') =R. (F*,G*) = R (F,G).
m*~p,q m p q p ,q

Now if for each even m we define the probability measure Pm on

* (1,2,..., m) x (0,I) by P M((il x (j)) = P(((i - l)/m,i/m) x (0,1}),11, .. m

j= 0,1, then it is easy to see that as a trivial corollary of eqn. (1.4.11)

* these measures P satisfy the conclusion of Lemma 1.4.4.
m

Proof of Theorem 1.4.1. To prove the inequality in Theorem 1.4.1, by

Lemmas 1.4.3 and 1.4.4 it suffices to notice that if 0 <r <1, s-1 -r, p-1/r

and hence p' =1l/s, then

lim.,.2m1 ( J A1I) 1  2a.[I - (!p I log (a

*(where A1 , ...,0 A are as in eqn. (1.4.9)).
m

To prove the second part of Theorem 1.4.1 consider the probability measure

* P on 10,I] x{(0,11 with uniform marginals, such that for every Borel subset A

* of [0,I] (letting B =fl} as above),

P(AnB 1 ) =f[ + F'I(x) ]dx
A

*where 1(x) i s as in Lemma 1. 4. 2 for 0 sx and F (x) =F(1 - x) for s5x!51.

- By an argument like the last part of the proof of Lemma 1.4.4 (and taking into

account the Remark prior to Lemma 1.4.3) one can verify that if 0 <r <1,

A*..

.~ P .. %zzp
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s =1 -r, p =l/r and hence p' =l/s, then for this measure P,

Sip (F',G*) a a and Rp,p,(FGG*) = 2a[I - (.) p log(2a)]I/p' where
h/p,/p''I p

F* and G* are as in the proof of Lemma 1.4.4.

-°,

- d
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SECTION 2: THE VECTOR CASE

In Section 2 here we shall examine measures of dependence which are

based on random variables taking their values in Banach spaces, i.e.

"B-valued" r.v.'s. For simplicity we consider only real Banach spaces.

But all results here are valid for complex Banach spaces as well. In

fact every complex Banach space is also a real Banach space (by restricting

the scalars), and a simple argument will show that the results for the

complex case follow from the real case.

Much of the theory of operators on spaces of functions (including

many results in interpolation theory) has been extended to functions taking

their values in Banach spaces. Most of the results here in Section 2 are

entirely elementary and in many cases are simply a reformulation, in our

context, of results already known in functional analysis in connection with

B-valued functions. Our main goal here is to clarify the connection between

measures of dependence and functional analysis involving B-valued functions.

SECTION 2.1: PRELIMINARIES

Here in Section 2.1 we shall review, in our terminology involving

measures of dependence, some elementary aspects of functional analysis

involving B-valued functions.

The norm of an element x of a given Banach space B will be denoted

by IlxllB.

First recall that in the special case of a real Hilbert space H with

inner product <.,.> , each real bounded linear functional g on H is of the

form g(x): = <x,y> yxEH for some fixed y H In this setting it

is common practice to identify the functional g with the element y; and

". . - . .'.*.'.." .'..,,-.'.'..'/ ',.....'..'.-, .. ',' -. .. ,, ,. .'.... . . . . . . . .. . ... ,.. . . . . . .-. .'.. .,... .-.. . . . .,. .,.,.. .
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. with this identification one can say that g(x) = <x,g>. To put this

* another way, H is (isometric to) its own (real) dual space.

Suppose B is a Banach space (with just real scalar multiplication).

*. If x E B and g is a real bounded linear functional on B, then we shall

use the notation <x,g> := g(x) (by analogy with the Hilbert space context

described above). The (real) dual space of B, i.e. the space of all real

bounded linear functionals on B, will be denoted by B*. Of course B* is

itself a Banach space (with just real scalar multiplication) with norm

I1 IB- given by

g(2.1.1) I11 BI sup -Lx, xE B

= sup <Xg> , x B

l IXllB

(The latter equality is trivial; one can consider -x in place of x.)

If x E B then we can define a real linear functional z on B* by

z(y) := <x,y> Vy CB* . That is, <y,z> := <x,y> Vy EB* . It is easy

to see that z is a bounded functional, i.e. z EB** (the "second dual" of

" B), with norm llzllB, = IIxIIB The identification of each x EB with the

corresponding z B** is the standard way of isometrically embedding B in

B**. In many cases B** will have other elements besides (the embedding of)

the ones in B.

Recall the simple equation

(2.1.2) y EB*, iup '<y,z>f . z EB t ' = EfylBB.
-" IIZINB**

(or, similarly, Vxr B, 1IxlB = sup I<xy>I/1yIl , yE B*) . The following

...... .... .. . . . . ........ .. . ......... . .
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simple consequence of eqn. (2.1.2) will be useful later on:

Lemma 2.1.1: Suppose B is a Banach space, y4EB* , z EB** , and

e> 0 . Then there exists x EB with Ii~clB < flZffB, such that

I<y,z>l < (1+0 <xy>.

Now let us return to our probability space (2,M,P) . For each

a-field A cM and each Banach space B, define S(A,B) to be the set of all

A-measurable simple B-valued random variables, that is, the set of random

. variables of the form ENL= x. I where N is a positive integer,
i 1l A(i)

x 1 ,...*, xN are elements of B, and {AI,...,AN} is a partition of Q with

- A. EA Vi . For each X ES(AB) and each p, 1 < p < , define

.. I/p
":" I~I p :  11 IIXIIB 11 :  [E(IIXII~P ) ]  if 1 < p <

t ess sup IIXI B if P =

T To put this another way, if X = ZN x I with N, xl .-,xN, Al,...,AN" i=l A(i)Xl'"

as above, then liXilp = [ 1 llx i lj * P(A")]11P if 1 < p < , and

IIXIl0o = max {lx lie : P(Ai) > 0}

For each p,q with 1 < p,q < ® and each Banach space B, define the

" measure of dependence R p, (B) between a-fields F and G as follows:

R p,q(F,G;B) := sup IE<X,Y>-<EX,EY>I , X ES(F,B)
::~~~ ~~ Ellp I~l S(G,B*)

Proposition 2.1.2: Suppose 1 < p,q < , and B is a Banach space.

Then for any two a-fields F and G the following three statements hold:

"1. (a) For any Banach space B1 which is isometric to B,

Sp,q (F,G;B 1) Rpq(FG;B)

:. ... .=. . , • . . -%". .. % % -'.' -,•.. ."..- .=. . . . . , ... ,.......- . ... ". ". ... .. . ".. -.
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(b) For any subspace B of B (or Banach space BI which is isometric

to a subspace of B), R p,q(FG;B1 ) < Rp,q(FG;B)

(c) Rpq (FG;B) = sup Rp'q(FG;B1 )

[Finite-dimensional subspaces BI of B

Proposition 2.1.2 is elementary and its proof is left to the reader.

The Hahn-Banach theorem will be helpful in proving part (b).

Proposition 2.1.3: If 1 < p,q < - and B is a Banach space, then

for any two a-fields F and G, R p,q(F,G;B*) = R q,p(G,F;B).

Proof: We shall first prove the following lemma:

Lemma: If e > o , YES(F,B*) , and ZE S(G,B**) , then there

exists XeS(GB) such that lixif <I1Z1q and IE<Y-EY,Z>I < (1+c) E<X,Y-EY>

Proof of Lemma: Represent Y-EY and Z by Y-EY = 1=1 'I A i) and

Z = j=l z I where y. E B* Vi , {AI, ...,A1 } is a partition of 0
j=1 j Bwj 1

with A. 4E F Vi , z. B** Vj , and {BV B I is a partition of Q

with B. Gvj

Using Lemma 2.1.1, for each j=l,...,J let x. c B be such that

jIxlIB < lzjllB** and

S< EL P(AinB )y i ,zj > I < (l+E) < xj I l P(AinBj)y

i=1 1 -1 3 i=l I 1

Define X ES(G,B) by X := E xj I . Then IFx([)oIB _< lIz(W)IIB**

for every w E 0 , and hence liXitq _ 1IzI * Also,

":IE<Y-EY,Z>l a = E IJ= <z I ( .Y,
q

j~E l <Il P(Ai B)Yi' j>

". -- ~j <El~ P( Bj)i zj > 1

< E +~fi (IE <xj E I  P(A i n Bj)

-3' i=1 1 )Yi1

• = (1 c) E<X,Y-EY>

- d a b-.-. a . . . ... * - . . . . .

q°. a . - . a . . . . . . . . . . . .

:C&.°..' ..- .- -. . .. - . .. -.- -.- .. . .....-. .. .., .. . .. •. ... ..- . ., . ....- .. ....-.: ..... " . L i .i " ...
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This completes the proof of the lemma.

By the lemma, for any YE S(F,B*) ,ZE S(G,B**) ,and c > 0,

IEiY,Z> - 'EY,EZ>! IE<Y-EY,Z>i

<_1e u E<X,Y-EY> ,XE S(GB)

111q PHp

=(l+e) Fsup E<X,Y> -<EX,EY> ,XE S(G,B)]

L lixil q 11Yli pj

Hence R pq(F,G;B*) < R qp(G,F;B)

By an exactly analogous argument, R (G,F;B**) < R (F,G;B*)
q,p - p,q

By Proposition 2.1.2(b) and the fact (noted earlier) that B is isometric

to a subspace of B**, R qp(G,F;B) < R qp(G,F;B**) .From these last three

inequalities Proposition 2.1.3 follows. This completes the proof.

From two applications of Proposition 2.1.3 (or from its proof) we have

Corollary 2.1.4: If 1 < p,q <-and B is a Banach space, then

p,q p~q(B

Let XI(resp. too) denote the Banach space of all absolutely suinmable

* ~(resp. bounded) sequences x :=Cl 2 ~,.)of real numbers, with norm

It is well known that (ZI ) * is isometric to Zoo, the standard isometry being

(informally described) as follows: If x : 1'2** Ek and

y :=(n 1,2 ,J...) co then
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* 00
(2.1.3) y(x) : <x,y> := E1_ ini

Theorem 2.1.5: If I < p,q < and B is a non-trivial Banach space,

then R (R)< R (B) < R o,0) =R (2 1)
p,q -p~q -p~q p,q

Proof: The first inequality follows from Proposition 2.1.2(a)(b),

since R is (isometric to) a subspace of B. The second follows similarly if

B is finite dimensional, since every separable Banach space can be isometrically

embedded in Z (as is well known); the general case follows by Proposition

-. 2.1.2(c).

Finally, by the second inequality and Proposition 2.1.3, we have that

* for any two o-fields F and G cM ,

001 001R (F,G;2,) = R (G,F;£ 1) < R (G,F;9,) = R (F,G;, 1) < R (F,G; zoo)
p°q qp - qp pq pq

This implies the final equality in Theorem 2.1.5. This completes the proof.

For the next theorem, recall eqn. (0.4).

Theorem 2.1.6: For every non-trivial Banach space B the following three

statements hold:

(a) RI,q(B) = Rl,q (R) yq, 1 < q < 00

(b) Rp I1 (B) = Rp I(R) VP, 1 < p < 00

(c) In particular, R,(B) = RI, 0 (R) =2

Proof: Let us take (a) for granted for a moment, and look at (b) and

(c). From (a) and Proposition 2.1.3 (and the trivial fact that R* is

isometric to R) one can easily derive (b). The first equality in (c) is

a special case of (a). The second equality in (c) is well known: The

°-.

.-~~....-..........-............. .........--.-..-....... -.- •'.. ".. . -".. .-- ". i.- "";"--'.':'>
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inequality RI(F,G;]R) < 2*(F,G) follows e.g. from [I0, pp. 11-12,

Lemma 1.1.9], and the opposite inequality follows from a simple argument

based on the identity

E[IACUIBI B - EIAE(IB-I = 2. [P(BIA)-P(B)] • IIIjAIII • 1l-IB C1.

(say with A E , B cG , P(A) >0 ) . Now all that we need to do is

prove (a).

It suffices to prove that RI,q(F, G;B) = RI,q(FG;R) in the case where

1 < q < - is arbitrary but fixed and F and G are finite a-fields, say

with F generated by the partition {A1 ,...,A I} of 0, and G generated by

the partition {B, ... ,Bj} of 0 . Without loss of generality we assume

that P(B) >0 j .

Suppose X ES(F,B) and Y ES(G,B*) . It suffices to prove that

(2.1.4) IE<XY> - <EX,EY>l < R ,q(FG;]R)  * 11) 1, * IjY1q .

Represent X and Y by X := I x I  and Y := Z 1 I
i=1 IA(i) 1 j B(j)

with x c B and yjE B* , with the events A1 , .... AIB 1,...,BJ being as

" above. Then

IE<X,Y> - <EX,EY> =

-l <x.y> [P(An B.) - P(AM)P(B.)]I

< j IXiIB IIyjIIB* iP(AiIBj) - P(Ai)" P(Bj)
j=l j=*

[£j=1 IlyjlIq *  "P(Bj ) l l / q

.E.= I IIxiIIB IP(Ai[B P(A ).) q)P(B 1/ q '

I,.

-::-:-:::,:.,. ..... . ................... ..... .................. .... oI ::: ~~~~~~~.. . .......... : .: .... -. .,,, * -," *,',-i II I
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IIIIq * IiXB IE(I(j) IG) - EIA( i ) I Iq'
< E Il q E

-- IIYIIq i-1 IlxiIIB IIEC"A(i) IG) - EIA(i)IIq,

E 1 qFi;1 I, i - R, II ,R III

<IIYllq * Zi- IlIxiliB " IqCFGR " A~i) 111

= R1,q (F,G;R) - Ilxllt - IlYI11q

by H6lder's inequality, Minkowski's inequality, and Proposition 0,1(ii).

Thus eqn. (2.1.4) holds. This completes the proof.

Remark 2.1.7: We finish Section 2.1 with the following three comments:

(a) From Theorem 2.1.5, for given p and q with 1 < p,q <= , one can

interpret R pCq(1) (= Rp, (11)) as Rp,q ("Banach space"), i.e. supB Rp,q(B)

(b) For given p and q (with 1 < p,q < -) and Banach space B, one has

an equality analogous to Proposition 0.1, namely

R p,q(F,G;B) = sup qE(XIG) - EXIIE , XS(F,B)

(For Xl S(F,B) , the definition of the q'-norm of the not-necessarily-

simple B-valued function E(XIG)- EX will be straightforward.)

c) Interpolation theory applies nicely to B-valued functions; see

[1, Chapter 5]. In [3, Remark 4.1] it was noted that by the Riesz (or

Riesz-Thorin) interpolation theorem, there are only four equivalence classes

for the measures of dependence R in the lower triangle 1/p l/q < 1
p, q

represented respectively by, say, R, 0, R1 ,00 , RD 1 . and R 2,2 Similarly,

by corresponding interpolation theorems for B-valued functions, for any

given Banach space B there are at most four equivalence classes for the

measures of dependence R p,q(B) in the lower triangle I/p + 1/q < 1

p5
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represented by, say, R,,,(B) , RI,m(B) , R0,1(B) , and R2,2(B) . By

Theorem 2.1.6, RI,,,(B) and R1 (B) do not depend on the choice of (non-trivial)

B; but as we shall see in the next section, R00 O(B) can significantly vary

with B.

SECTION 2.2: ABSOLUTE REGULARITY

The measure of dependence B in eqn. (0.7) is the basis for the well

known "absolute regularity" [17] condition for stochastic processes. It is

already known that 8 is not equivalent to any of the other measures of

dependence given in eqns. (0.3)-(0.6) and (0.8), or to any of the measures of

dependence ar,s C 0 < r,s < 1 ) or Rp,q ( 1 < p,q <- ) in eqns. (0.10)-(0.11)

at all. (More on this shortly.) Also, it seems that many limit theorems

for real-valued (or even H-valued) r.v.'s under the "strong mixing" condition

(which is based on the measure of dependence a in eqn. (0.3)) cannot be

carried over to more general B-valued r.v. 's unless the assumption of

strong mixing is replaced by the (stronger) assumption of absolute regularity.

See e.g. the discussion and results in Dehling and Philipp [5]. To some

extent, absolute regularity appears to be the most natural mixing condition

"- for limit theory for B-valued r.v.'s. Indeed, the measure of dependence 8

*" has a quite "natural" interpretation in terms of the measures of dependence

R pqB); in Theorem 2.2.1 below, it will be shown with a totally elementary

argument that S = (1/2)" R (1 (1/2) RO C ))

Now let us clarify the comparisons between 8 and the measures of

dependence a rs, R in eqns. (0.10)-(0.11). Recall the inequalitiesr~s p,q

a < a < * (see eqns. (0.3)-(0.4)). Also, 8 does not dominate p (see

eqn. (0.6)). (For a a-field F= {i,A,ACi) with P(A) = c (say with c

small), one has 8(F,F) = 2c(l-c) and p(F,F) = 1 .) From these facts and
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the remarks in Section 1.2, one has that B dominates a r, only for

r + s < 1, that B dominates R only for 1/p + I/q < I , and thatap, q

is dominated by a, s if either r= 1 or s=1 , and hence by R A if

either p- 1 or q= 1 . In Theorem 2.2.3 below we shall show that B

is not dominated by ar,s if r<I and s<l , or even by Rpq if p>l

and q>1

Theorem 2.2.1: R. ,000)9. R u .(P) = 20.

Proof: By Theorem 2.1.5 it suffices to prove that Rea(,1) = 28.

Since these measures of dependence automatically satisfy eqn. (0.1), it

suffices to show that if F and G are finite a-fields then

R, .(F,G;9J) = 2 - O(F,G)

Suppose F is a finite a-field, generated by a partition {AI,...,A I}

* of n?, and G is a finite a-field, generated by a partition {BI,...,B } of Q2.

Without loss of generality we assume that P(A.) > 0 Vi and P(B.) > 0 Vj

Recall that (91), is isometric to 97, we shall use the natural

identification of these two spaces described in eqn. (2.1.3).

If X eS(F,,1 ) and Y £S(G,97) then one can represent these r.v.'s by

* X := E I x i and Y := £J (with each x. E9 1 and each
il Ii ) jl yj IB(j)

y- ek ) , and one has

IE<X,Y> - <EXEY>"

. 10 l <xi'y > (P(Ain B.) - P(A.)P(B.))
i Jul ij 1 J 1 3

(2.2.1) 1

< (sup Ilxill1 )  (sup IlYjlI) * E Z IP(Ain 8)- P(A )P(Bj)I
j £ i=1 jul

lx o" IIY Il • 20(F,G)

%I

*1
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Hence R. (FG;z ) < 28(F,G) . Conversely, in eqn. (2.2.1) equality is

achieved if we take

x. := (0,...,O,1,00,...) (where the 1 is the ith coordinate),
I

*Y: (Yjlyj2,yj3,...) where

Yjk ff  Jsign of [P(Ak nBj) - P(Ak)P(BJ)] if 1 < k < I

l0 if k > I

Hence R.0,(FG;X ) = 28(F,G) . This completes the proof.

Corollary 2.2.2: For every Banach space B, Roo (B) < 20

This just follows from Theorems 2.1.5 and 2.2.1

Theorem 2.2.3: Suppose that 1< p,q<oo . Then (on some probability

.. space) the following two statements hold:

(i) Rp,q fails to dominate 8

(ii) For each p1 and q, such that 1 < pl,ql < , Rp,q fails to dominate

"'"R (£Oo)
R Pl'qlp G)

Here (ii) is a trivial corollary if (i) and Theorem 2.2.1. To prove

Ci) we shall show in Example 2.2.4 below that for different choices of pairs

*'  of a-fields F and G, on different choices of probability spaces, one can

, (simultaneously) have 8(F,G) = 1/2 and R (F,G;R) arbitrarily small.
pq

Then by eqn. (0.13) and Remark 0.4, (i) will follow.

Example 2.2.4: Let p and q be arbitrary but fixed, such that 1 < p,q <

We shall show that R p, (FG;R) can be arbitrarily small for a-fields F

and G satisfying 8(F,G) = 1/2 . Now R is non-increasing as p and/or q
p,q

increases; without loss of generality we impose the following further
i.a~restrictions on p and q:

-.- ..*.* . . . . . .. *....a....'.'.,.,"•.". . ',. '....... ..... . .... -. ...... ,'.. . .. -""
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(2.2.2) l<p < 2

(2.2.3) l<q< -

Thus q satisfies 1< q' < o

The following elementary fact will be needed later on:

(2.2.4) Val...-,a cR, (E 1 IakIP) 1 /P > (M I 1/2

t t t(Let us quickly review this. Recall the elementary inequality (a+b) > a b

for a >, b > O, t > 1 . By induction, (E=m ck)t > Em= c for t > 1

and non-negative c,...,c . Now plug in ck :- lakIP and t := 2/p

using eqn. (2.2.2).)

Now let n be an arbitrary but fixed positive integer. Construct the

probability space (Q,M,P) as follows:

Define Q := (1,2,...,2n) x [0,I] . Define M- the family of Borel

subsets of S. Define the probability measure P1 on {1,2,...,2n) (with the

standard discrete a-field) by P1 ({j}) = (2n) "  j =1,2,...,2n . Define

the probability measure P2 on [0,I] (with the Borel a-field) to be Lebesgue

measure. Finally, define the probability measure P on (S,M) such that P is

absolutely continuous with respect to P1 x P2  , such that

I + h.(x) if I < j < n

(2.2.5) dP (j,x) :
dC(XP ) 1 - hjn (x) if n+ 1 < j < 2n

where h,, h2, ... are the Rademacher functions on [0,1].

Note that the marginals of P on {l,2,..,2n} and [0,I] are P1 and P2

respectively.

I

I

4'. ~ 4.~ 4 ~ ~ :* ~ -:, - *- ~*~ % \-'T ::;c:~.,~.- -.A-.:-- : ,..-* ..:.;



44

Let us define the "marginal" a-fields

F := {Ax[0,1]: A is a subset of {1,2,...,2n}}

G. ({1,2,•... 2nxB: B is a Borel subset of [0,1]}

By Proposition 0.1,
ll tI(fIG - Efill

(2.2.6) R pq(FG;R) - sup q fES(F, R)

pI 111
Let f be an arbitrary but fixed (simple) real-valued, F-measurable r.v.

We shall first obtain an upper bound on 11E(fIG) - Ef 19f 1p •

This function f a f(j,x) depends only on j; we can use the notation

f(j) :- f(j,x) Vj - 1,2,...,2n (x e [0,l])

Define the functionsf1 and f 2 on {1,2,...,2n) as follows:

(2.2.7) fl(j) := -f1 (J+n) := (f(j) - f(j+n))/2 Vj = 1,2,..., n

(2.2.8) f 2 (j) := f 2 (j+n) := (f(j) + f(j+n))/2 Vj = 1,2,...,n

Then Vj u l,2,...,2n , f(j) = flj) + f 2 (j)

For a.e. x c[O,1] (and every 1E (1,2,...,2n}), we have by eqn. (2.2.5)

and some simple calculations, E(f]G)(I,x) - Ef = n.=l f(j) *hj(x)/n

Therefore

I E(fIG) - Efllq' = (1/n) [$ 1  n. f(j) h(x)lq 'dx]l/q'

By eqn. (2.2.7) and the convexity of the function up (for nonnegative

u), we have that 1 f 111 I fiip . Also Ilfl1Ip = [(I/n) . n =  I(i) 'i p ]I / p

by a trivial calculation. Hence by eqn. (2.2.4) and Khinchin's inequality

. (see e.g. [20, Chapter 5, Theorem (8.4)])

.'..

-.. S. . ~ * . U
..- ,* 5

**.*....:.
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0/)- I nJ~ qI/

HIE(f IG) - Bell1 g n~l P ' [V [Zn  flI(j) h j(x) I dx] / q

< n /*
Of 11219.1/2mp)

n(l1 p )- 1 C(q') •,[nl (flM ))21/

0 j1 flM j 1 2 ] 1/2

a n "I/ P ' • C(q I)

where the constant C(q') depends only on (our fixed value of) q1.

Since f was arbitrary, we have by eqn. (2.2.6),

R p, (F G; R) < n"I/p 1 • C(q')

By making n sufficiently large to begin with, we can make R p,q(F,G;R)

arbitrarily small. Also, by eqn. (2.2.5) and an elementary argument,

regardless of the value of n,

1 dP
O(F,G) 2 $I 11 d(Pl xP2)2 d(P 1xP 2)

2 f1 1 d(P 1 XP 2)

1

2

This completes the discussion for Example 2.2.4, and thereby completes the

proof of Theorem 2.2.3.

Remark 2.2.5: Gastwirth and Rubin [7] defined for each t, 1 < t < =

the following measure of dependence:

At(F,G) := Ilvar[PG(. I F)- PG(.)lt

where PG is the restriction of the measure P to events in G. For finite

*_ . ... .. .. .. . ..... . . . " ." ., ." ," ,." %%" %" "a . %".""' "'",
f qp .' ' lm ' .' ." .' . ." " . .' .' , .' " " ..- ' ... ,.' '., .' .'. '.. .'. .~' "." ". .". .", . . ,.' " "..,' .'' ., , .*, .

* . . . ..."-"-".' ".". .. "-".".".".",". "" . . ., '" ." " " '. """..,"." '',.<.'>;,-; '..,''.....''.,.. . .a *



46

°a a-fields F and G the definition of A (FG) is clear; and for general a-fields
t

F and G, where a measure-theoretic ambiguity may have to be settled, we shall

simply stipulate that eqn. (0.1) be satisfied by A . It is easy to see that

A1 =2B, A =2, and that At is equivalent to B if l<t<-. By a simple

argument similar to that of Theorems 2.1.6 and 2.2.1, one has that for each

,, t, i t~o

At a Rt, ( ) Rt ( "
• m ,,

SECTION 2.3: THE HILBERT SPACE CASE

In [3, Section 4.3] measures of dependence based on H-valued (Hilbert space

valued) random variables were examined. Here we shall extend the main result

of that section. As earlier it suffices to consider real spaces.

Let H be an arbitrary real Hilbert space, with inner product <.,.>.

For each p, 1:5p<<, the quantity Zp := [(2 )'.JxjPexp(_x2/2)dx]' / p

(the p-norm of a standard N(0,1) r.v.) will be useful.

2Theorem 2.3.1. If H is a non-trivial Hilbert space, (p,q) c [1,0] , and

F,G cM, then R p,q(F,G;H)<A-R p,q(F,G) where A =A(p,q) is a function only

of p and q. Further, if 1 <p,q <- then one can take A(p,q) =Z .Z for

any choice of p1 and ql satisfying p ! p1 < -, q -c q l < oo and
.- I -I

: P1 +q 1 51; and in particular, if lp,q!-2 then R (F,G;H) = R (F,G;J1).
pq P,q

2
Thus for a given (p,q) c [l,-] the measure of dependence R (H) is

p ,q

linearly equivalent to Rpq (R) (or to Rp,q in eqn. (0.10)). For the case

p=q=-0 , this was shown by Dehling and Philipp [5, p. 692, Lema 2.2], who

used the Grothendieck inequality in their proof. Under the restriction
b :"-1 -lI

p +q sl one has Theorem 2.3.1 from [3, Theorem 4.2]; the purpose here is

to remove that extra restriction. Theorem 2.3.1 is not a particularly new

[= .t ".. .. . .'. "4" ,. ."..," . .. ,s.. . ' '... ' '.... *. , .-.. . .. . -.. "."-".", . . . '.- . ...... ,... -.-..-.
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result, but rather an adaptation to our context of results well known in

functional analysis.

The very last case of Theorem 2.3.1 (l:p,q 2) follows from the rest of

that theorem by taking p = ql = 2. (See eqn. (2.3.1) below.)

The proof of Theorem 2.3.1 will be based on the following lemma:

Lemma 2.3.2. Suppose lpp!5< , lq sq 1  , and p1 +q1 1l. Sup-

pose Xl,..., XI  and Yl..., YJ are real-valued (or complex-valued) random

variables. Then

i) 1 ;p [ (Y)J=111  ) (I ) lp U(IYj- II ) q

Proof.

".i:~~ F[(Xll p l(j.J .1)111 I X~i1[ (l~[[ (Yj)j=I lfl l

-J

L"~~I j(.J ' ll Ijl:5: 11I ( (Ixill pl)i__11 P 1(Iyilqlj j~lltq
p =t

Here the first inequality comes from Hlder's inequality (and the fact that

our measure is a probability measure). To show the second inequality it is

enough to show that

o ,"It i l l I xi1lpl)i
1i-l p?

if p, -- then this is simple. (Also, if p =1 then this is simply Minkowski's

inequality.) If p <0 then
I

'i.
I I11-1 [II ill x l rp l

1r Pj / l [ II IX.ll 1l'

ju 1 P1/P l i1/p

. "Pl/P. • pl/

il x pi~p 1Jixli

ja p/ P/
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X 1/p I [p 1p/pip/p1 l/pjuLil 2. tlI p 'pp =i=l 1[E x

I Ixjipl/p II- lxi I 'ii

I I li ip l / - 1 li i ll 1 •
-1 p 1

This completes the proof of Lemma 2.3.2.

Proof of Theorem 2.3.1. For the cases p =® or q=o, see [3, Theorem

4.2]. Here we only consider the case where 1:5p< and 1:5q<-. As in the

proof of [3, Theorem 4.2] we restrict our attention to an arbitrary finite-

dimensional real Hilbert space H; we use the same Gaussian probability

measure y on H as was used there. (The use of a Gaussian measure here is

similar to its use in Rietz [14].)
I[I andwhere {AI  Al}

Suppose X := EiIlA(i) and Y := Zj=lYjlB(j) A.., I

and {BI,.••, B i are each a partition of R with Ai eF for all i and

Bj EG for all j, and xl,..., x, and yl,..., yj are elements of H. To

prove Theorem 2.3.1 it suffices to prove that

(2.3.1) IE<X,Y> - <EX,EY>l 5 R (FG;IR) ZplZ Z lixil " IIYIl
p ,q p'1 q, q

holds for every choice of p1 and q, meeting the specifications p 5<p,

.q:ql<C,, and p1 +qll l.
1 1

Before we prove eqn. (2.3.1), a couple of preliminary observations will

be needed. For any x,y cH one has <x,y> = fH<x,u>'<y,u>y(du). (This was

used in the proof of [3, Theorem 4.2].) For any xeH the r.v. V:H- -1R

defined by V(u) := <x,u> is a N(O,2ixlI ) r.v. (on the probability space
~t,. (H,y)), and hence for any t, lt<, fHl<x'u>lty(du) = I[x Zt

These observations, Fubini's theorem, and Lemma 2.3.2 (on the probability

space (1l,y)) will now be used to prove eqn. (2.3.1), under the given

.-. .-. - - ' . ...- - .... ,. ..- . - -,. .. ,. . . . . , - . - -• . . . . . .
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specifications on p1 and las follows.

IE<XY> -<EXEY>I

=IfE(<X,u>'<Y,u>)y(du) - f<EX,u>.<EY,u>y(du)j
H H

= f[E(<X,u>.<Y,u>) - E<Xu>*E<Yu>]y(du)l
H

H~/ pi J

lip H ii<Y ou . (B1/ qy~

=R (F.,G; J -j((<x,u>P (A ) p ,I(<Y) .,u>
p,q H i l

Rp(F;]) II(fI<xjvu>.P1/q (B )IqlY (du))/l...1 11
H j j = 1 q

pq H H

=R (F,G;JIR) * I(P ~ (A )(fIxItvl.Zl~/Pl)l/pl)~Ip,q i i H p1 i

=R (F, G; IR) IZ *ZA elxi 11~~
p,q i'1 q1  q

Thus eqn. (2.3.1) holds. This completes the proof of Theorem 2.3.1.

Acknowledgments. The authors thank A. Gillespie for calling their atten-

tion to Zafran (19], and A. Gut for his interest and encouragement.
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. ADDENDUM.

In connection with Theorem 1.1.1 and 13, Theorem 3.6], here are some

extra comments, added when this report was in the final stages of its prepa-

ration. The multilinear form B in Theorem 1.1.1 automatically has the property

that B is a "product form" (in the terminology used in [3, Theorem 3.6]). For

any given p, for t >0 sufficiently small one can refine Theorem 1.1.1 by having

d (B) =t, with B itself being a product form, (without disturbing the other

properties in Theorem 1.1.1). (The positive constant C =C(p) may have to be

made smaller, but that is of no significance.) To carry out this refinement,

we can restrict our attention to the case where 1 <Pk <_ for some k, as in

the proof of Theorem 1.1.1. By examining the bottom four lines of p. 12 (and

the two top lines of p. 13) in the case where Bk = 10,1] for all k, we see

*. that d (B) 2 2 n+lt in that construction. For t >0 sufficiently small
21

(depending on p) we can start by simply using that construction with t replaced

. by 2nt. Then 2tid P(B): 2nt. To then modify the construction so that

d (B) =t and B is a product form (without disturbing the other properties in
P_

Theorem 1.1.1) we simply define the number a := t/d (B) and then replace
.2

the probability measure P in the construction by the new probability measure

aP + (I - a).[Lebesgue measure on [0,1] n].

This refinement can also be easily worked out with B being the n-dimen-

sional cumulant, because of the fact (see p. 12, line 7) that the (n -1)-dimen-

,'. sional marginals of the given probability measure P are simply (n- 1)-dimen-

sional Lebesgue measure. If one isn't concerned about the particular formula

for the multilinear form B, then (for a given p.) "not so small" values of

t S 1 can also be covered in this refinement by simply using the multilinear

form B(fl, ... ) ffi t.E(fl.....fn) on a trivial probability space con-

*-" sisting of just a single point. Also, Remark 1.1.2 can be refined (with an

appropriate linear functional) in an exactly analogous manner as above.
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